Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836995

RESUMO

Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle's response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test-retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative.


Assuntos
Articulação do Cotovelo , Cotovelo , Humanos , Adulto Jovem , Adulto , Cotovelo/fisiologia , Articulação do Cotovelo/fisiologia , Antebraço/fisiologia , Torque , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Postura/fisiologia , Estimulação Elétrica
2.
Brain Topogr ; 30(1): 30-45, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27659288

RESUMO

Growing evidence from neuroimaging studies suggest that emotional and cognitive processes are interrelated. Anatomical key structures in this context are the dorsal and rostral-ventral anterior cingulate cortex (dACC and rvACC). However, up to now, the time course of activations within these regions during emotion-cognition interactions has not been disentangled. In the present study, we used event-related potentials (ERP) and standardized low-resolution electromagnetic tomography (sLORETA) region of interest (ROI) source localization analyses to explore the time course of neural activations within the dACC and rvACC using a modified emotional Stroop paradigm. ERP components related to Stroop conflict (N200, N450 and late negativity) were analyzed. The time course of brain activations in the dACC and rvACC was strikingly different with more pronounced initial responses in the rvACC followed by increased dACC activity mainly at the late negativity window. Moreover, emotional valence modulated the earlier N450 stage within the rvACC region with higher neural activations in the positive compared to the negative and neutral conditions. Emotional arousal modulated the late negativity stage; firstly in the significant arousal × congruence ERP effect and then the significant higher current density in the low arousal condition within the dACC. Using sLORETA source localization, substantial differences in the activation time courses in the dACC and rvACC could be found during the emotional Stroop task. We suggest that during late negativity, within the dACC, emotional arousal modulated the processing of response conflict, reflected in the correlation between the ex-Gaussian µ and the current density in the dACC.


Assuntos
Atenção/fisiologia , Emoções/fisiologia , Potenciais Evocados/fisiologia , Giro do Cíngulo/fisiologia , Teste de Stroop , Adulto , Nível de Alerta/fisiologia , Cognição/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...